Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 11: 479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425771

RESUMO

INTRODUCTION: Re-entry is a basic mechanism of ventricular fibrillation, which can be elicited by extrasystolic activity, but the timing of an extrasystole can be critical. The action potential duration (APD) of an extrasystole depends on the proximity of the preceding beat, and the relation between its timing and its APD is called electrical restitution. The aim of the present work was to study and compare the effect of several antiarrhythmic drugs on restitution in preparations from undiseased human ventricular muscle, and other mammalian species. METHODS: Action potentials were recorded in preparations obtained from rat, guinea pig, rabbit, and dog hearts; and from undiseased human donor hearts using the conventional microelectrode technique. Preparations were stimulated with different basic cycle lengths (BCLs) ranging from 300 to 5,000 ms. To study restitution, single test pulses were applied at every 20th beat while the preparation was driven at 1,000 ms BCL. RESULTS: Marked differences were found between the animal and human preparations regarding restitution and steady-state frequency dependent curves. In human ventricular muscle, restitution kinetics were slower in preparations with large phase 1 repolarization with shorter APDs at 1000 ms BCL compared to preparations with small phase 1. Preparations having APD longer than 300 ms at 1000 ms BCL had slower restitution kinetics than those having APD shorter than 250 ms. The selective IKr inhibitors E-4031 and sotalol increased overall APD and slowed the restitution kinetics, while IKs inhibition did not influence APD and electrical restitution. Mexiletine and nisoldipine shortened APD, but only mexiletine slowed restitution kinetics. DISCUSSION: Frequency dependent APD changes, including electrical restitution, were partly determined by the APD at the BCL. Small phase 1 associated with slower restitution suggests a role of Ito in restitution. APD prolonging drugs slowed restitution, while mexiletine, a known inhibitor of INa, shortened basic APD but also slowed restitution. These results indicate that although basic APD has an important role in restitution, other transmembrane currents, such as INa or Ito, can also affect restitution kinetics. This raises the possibility that ion channel modifier drugs slowing restitution kinetics may have antiarrhythmic properties by altering restitution.

2.
Circulation ; 112(10): 1392-9, 2005 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16129791

RESUMO

BACKGROUND: Although pharmacological block of the slow, delayed rectifier potassium current (IKs) by chromanol 293B, L-735,821, or HMR-1556 produces little effect on action potential duration (APD) in isolated rabbit and dog ventricular myocytes, the effect of IKs block on normal human ventricular muscle APD is not known. Therefore, studies were conducted to elucidate the role of IKs in normal human ventricular muscle and in preparations in which both repolarization reserve was attenuated and sympathetic activation was increased by exogenous dofetilide and adrenaline. METHODS AND RESULTS: Preparations were obtained from undiseased organ donors. Action potentials were measured in ventricular trabeculae and papillary muscles using conventional microelectrode techniques; membrane currents were measured in ventricular myocytes using voltage-clamp techniques. Chromanol 293B (10 micromol/L), L-735,821 (100 nmol/L), and HMR-1556 (100 nmol/L and 1 micromol/L) produced a <12-ms change in APD while pacing at cycle lengths ranging from 300 to 5000 ms, whereas the IKr blockers sotalol and E-4031 markedly lengthened APD. In voltage-clamp experiments, L-735,821 and chromanol 293B each blocked IKs in the presence of E-4031 to block IKr. The E-4031-sensitive current (IKr) at the end of a 150-ms-long test pulse to 30 mV was 32.9+/-6.7 pA (n=8); the L-735,821-sensitive current (IKs) magnitude was 17.8+/-2.94 pA (n=10). During a longer 500-ms test pulse, IKr was not substantially changed (33.6+/-6.1 pA; n=8), and IKs was significantly increased (49.6+/-7.24 pA; n=10). On application of an "action potential-like" test pulse, IKr increased as voltage became more negative, whereas IKs remained small throughout all phases of the action potential-like test pulse. In experiments in which APD was first lengthened by 50 nmol/L dofetilide and sympathetic activation was increased by 1 micromol/L adrenaline, 1 micromol/L HMR-1556 significantly increased APD by 14.7+/-3.2% (P<0.05; n=3). CONCLUSIONS: Pharmacological IKs block in the absence of sympathetic stimulation plays little role in increasing normal human ventricular muscle APD. However, when human ventricular muscle repolarization reserve is attenuated, IKs plays an increasingly important role in limiting action potential prolongation.


Assuntos
Potenciais de Ação/fisiologia , Coração/fisiologia , Síndrome do QT Longo/fisiopatologia , Contração Miocárdica/fisiologia , Canais de Potássio/fisiologia , Potenciais de Ação/efeitos dos fármacos , Adulto , Antiarrítmicos/farmacologia , Arritmias Cardíacas/fisiopatologia , Feminino , Ventrículos do Coração/citologia , Ventrículos do Coração/fisiopatologia , Humanos , Técnicas In Vitro , Insulina de Ação Prolongada , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Músculos Papilares/citologia , Músculos Papilares/fisiopatologia , Técnicas de Patch-Clamp , Sotalol/farmacologia , Sistema Nervoso Simpático/fisiologia
3.
Eur J Pharmacol ; 470(3): 163-70, 2003 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12798954

RESUMO

The cellular electrophysiological effect of azimilide (0.1-30 microM) was analyzed in canine ventricular preparations by applying the standard microelectrode and patch-clamp techniques at 37 degrees C. In papillary muscle, the drug prolonged the action potential duration (APD) in a concentration-dependent manner at a cycle length (CL) of 1000 ms. In Purkinje fibers, at the same CL, the concentration-dependent lengthening of the APD was observed in the presence of up to 3 microM azimilide (at 3.0 microM: 24.1+/-4.2%, n=9); at higher drug concentration, no further APD prolongation was observed. Azimilide lengthened APD in a reverse frequency-dependent manner in papillary muscle and Purkinje fibers alike. Azimilide (10 microM) caused a rate-dependent depression in the maximal upstroke velocity of the action potential (V(max)) in papillary muscle. The time and rate constants of the offset and onset kinetics of this V(max) block were 1754+/-267 ms (n=6) and 5.1+/-0.4 beats (n=6), respectively. Azimilide did not prevent the APD shortening effect of 10 microM pinacidil in papillary muscle, suggesting that the drug does not influence the ATP-sensitive K(+) current. Azimilide inhibited the rapid (I(Kr)) and slow component (I(Ks)) of the delayed rectifier K(+) current and the L-type Ca(2+) current (I(Ca)). The estimated EC(50) value of the drug was 0.59 microM for I(Ks), 0.39 microM for I(Kr) and 7.5 microM for I(Ca). The transient outward (I(to)) and the inward rectifier (I(k1)) K(+) currents were not influenced by the drug. It is concluded that the site of action of azimilide is multiple, it inhibits not only K(+) (I(Kr), I(Ks)) currents but, in higher concentrations, it also exerts calcium- and use-dependent sodium channel block.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Imidazóis/farmacologia , Imidazolidinas , Músculos Papilares/efeitos dos fármacos , Piperazinas/farmacologia , Potenciais de Ação/fisiologia , Animais , Cães , Relação Dose-Resposta a Droga , Eletrofisiologia , Feminino , Ventrículos do Coração/efeitos dos fármacos , Hidantoínas , Técnicas In Vitro , Masculino , Músculos Papilares/fisiologia , Função Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...